Heterogeneity in readouts of canonical wnt pathway activity within intestinal crypts.

نویسندگان

  • Ning Li
  • Maryam Yousefi
  • Angela Nakauka-Ddamba
  • John W Tobias
  • Shane T Jensen
  • Edward E Morrisey
  • Christopher J Lengner
چکیده

BACKGROUND Canonical Wnt pathway signaling is necessary for maintaining the proliferative capacity of mammalian intestinal crypt base columnar stem cells (CBCs). Furthermore, dysregulation of the Wnt pathway is a major contributor to disease, including oncogenic transformation of the intestinal epithelium. Given the critical importance of this pathway, numerous tools have been used as proxy measures for Wnt pathway activity, yet the relationship between Wnt target gene expression and reporter allele activity within individual cells at the crypt base remains unclear. RESULTS Here, we describe a novel Axin2-CreERT2-tdTomato allele that efficiently marks both Wnt(High) CBCs and radioresistant reserve intestinal stem cells. We analyze the molecular and functional identity of Axin2-CreERT2-tdTomato-marked cells using single cell gene expression profiling and tissue regeneration assays and find that Axin2 reporter activity does not necessarily correlate with expression of Wnt target genes and, furthermore, that Wnt target genes themselves vary in their expression patterns at the crypt base. CONCLUSIONS Wnt target genes and reporter alleles can vary greatly in their cell-type specificity, demonstrating that these proxies cannot be used interchangeably. Furthermore, Axin2-CreERT2-tdTomato is a robust marker of both active and reserve intestinal stem cells and is thus useful for understanding the intestinal stem cell compartment. Developmental Dynamics 245:822-833, 2016. © 2016 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneity of the Level of Activity of Lgr5+ Intestinal Stem Cells

Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal homeostasis and intestinal regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal cr...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium

BACKGROUND A defining characteristic of the human intestinal epithelium is that it is the most rapidly renewing tissue in the body. However, the processes underlying tissue renewal and the mechanisms that govern their coordination have proved difficult to study in the human gut. OBJECTIVE To investigate the regulation of stem cell-driven tissue renewal by canonical Wnt and TGFβ/bone morphogen...

متن کامل

Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling.

Heparan sulfate (HS), a constituent of HS proteoglycans (HSPGs), is a linear polysaccharide present on the cell surface. HSPGs modulate functions of several growth factors and signaling molecules. We examined whether small intestinal epithelial HS plays some roles in crypt homeostasis using intestinal epithelium cell (IEC)-specific HS-deficient C57Bl/6 mice. Survival rate after total body irrad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental dynamics : an official publication of the American Association of Anatomists

دوره 245 8  شماره 

صفحات  -

تاریخ انتشار 2016